Comparison and Selection of objective Functions in multiobjective Community Detection
نویسندگان
چکیده
Detecting communities of complex networks has been an effective way to identify substructures that could correspond to important functions. Conventional approaches usually consider community detection as a singleobjective optimization problem, which may confine the solution to a particular community structure property. Recently, a new community detection paradigm is emerging: multiobjective optimization for community detection, which means simultaneously optimizing multiple criteria and obtaining a set of community partitions. The new paradigm has shown its advantages. However, an important issue is still open: what type of objectives should be optimized to improve the performance of multiobjective community detection? To exploit this issue, we first proposed a general multiobjective community detection solution (called NSGA-Net) and then analyzed the structural characteristics of communities identified by a variety of objective functions that have been used or can potentially be used for community detection. After that, we exploited correlation relations (i.e., positively correlated, independent, or negatively correlated) between any two objective functions. Extensive experiments on both artificial and real networks demonstrate that NSGA-Net optimizing over a pair of negatively correlated objectives usually leads to better performances compared with the single-objective algorithm optimizing over either of the original objectives, or even to other well-established community detection approaches.
منابع مشابه
A Comprehensive Fuzzy Multiobjective Supplier Selection Model under Price Brakes and Using Interval Comparison Matrices
The research on supplier selection is abundant and the works usually only consider the critical success factors in the buyer–supplier relationship. However, the negative aspects of the buyer–supplier relationship must also be considered simultaneously. In this paper we propose a comprehensive model for ranking an arbitrary number of suppliers, selecting a number of them and allocating a quota o...
متن کاملOptimal Power Flow With Four Conflicting Objective Functions Using Multiobjective Ant Lion Algorithm: A Case Study of the Algerian Electrical Network
In this study, a multiobjective optimization is applied to Optimal Power Flow Problem (OPF). To effectively achieve this goal, a Multiobjective Ant Lion algorithm (MOALO) is proposed to find the Pareto optimal front for the multiobjective OPF. The aim of this work is to reach good solutions of Active and Reactive OPF problem by optimizing 4-conflicting objective functions simultaneously. Here a...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملQuasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems
In this paper, we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data. Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question, then the essential properties of the newly introduced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Intelligence
دوره 30 شماره
صفحات -
تاریخ انتشار 2014